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PARADOX OF THE BLUNT EDGE OF AN AIRFOIL IN AN UNSTEADY FLOW

UDC 532.5:533.6D. N. Gorelov

A paradox of the blunt edge of an airfoil in an unsteady ideal flow is established, which states that
the solution of the nonlinear problem of unsteady flow around a blunt-edged airfoil subject to strict
boundary conditions at this edge is physically meaningless. The paradox is a consequence of the
adopted model of the unsteady fluid flow near the blunt edge, which assumes inflection of streamlines.
It is established that the solution of the problem by local replacement of the blunt edge by a sharp edge
using the hypothesis on the smoothness of streamlines near the trailing edge is physically meaningful.

The effect of the shape of a trailing edge on trailing-edge flow is differently manifested for steady and
unsteady flows. In the model of a steady plane flow of an ideal fluid subject to the Kutta–Joukowski postulate,
the trailing-edge shape influences only the velocity at this edge (it is equal to zero at a blunt edge and is different
from zero at a sharp edge). A different situation arises in the model of an unsteady plane flow. For this model, the
solution of the nonlinear initial boundary-value problem depends strongly on the shape of the trailing edge, which
changes both the local and integral characteristics of the flow around the airfoil, including velocity circulation.

Most of the theoretical studies of unsteady plane flows were concerned with solving problems of flow around
sharp-edged airfoils. In this case, the nonlinear initial boundary-value problem is usually reduced to successive
solution of linear boundary-value problems for a number of discrete values of time for which the airfoil position and
the shape of the wake vortex are specified.

The unsteady flow around a blunt-edged airfoil has been studied inadequately. This is due primarily to the
fact that at a blunt edge, the Kutta–Joukowski postulate is supplemented by the condition of zero relative fluid
velocity at the corner point formed by the wake vortex and the airfoil contour. As a result, the flow in a small
neighborhood of a blunt edge becomes substantially nonlinear. It should be noted that the well-known algorithms
of solution of the relevant initial boundary-value problem ignore this additional condition [1] or require that the
consequence of this condition rather than the condition itself be satisfied (see, e.g., [2–5]).

Gorelov and Smolin [6] proposed an algorithm of numerical solution of the nonlinear problem of unsteady
flow around a blunt-edged airfoil, in which the indicated condition was strictly satisfied. It was found that strict
satisfaction of the condition of zero relative velocity at the corner point formed by the vortex wake and the airfoil
contour generates a discontinuous solution for both the local flow characteristics near the trailing edge and for the
time derivative of the velocity circulation. This result is inconsistent with the real flow pattern.

The present work is a continuation of the studies initiated in [6]. We performed a more complete numerical
experiment using the algorithms designed in [6]. Results of the experiment showed that the adopted ideal flow
model leads to a paradox of a blunt edge in an unsteady flow, and it is necessary to improve this model for the
neighborhood of a blunt edge.

1. We formulate the main assumptions in the formulation of the nonlinear initial boundary-value problem
of unsteady flow around a blunt trailing edge airfoil. The fluid is ideal and incompressible, and the flow outside the
airfoil and the wake vortex is potential. The wake vortex results from a change in velocity circulation around the
airfoil Γ(t) with time t and sheds tangentially to the trailing edge from the upper or lower surface, depending on
the sign of the derivative dΓ(t)/dt (Fig. 1).
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Fig. 1

The wake vortex Lw(t) is simulated by a discontinuity line whose shape for each time is determined by
solving the Cauchy problem subject to the conditions that at the initial time t = 0, the wake vortex is absent (at
t < 0, the fluid flow is considered steady). The airfoil contour is simulated by vortex layers.

The intensities of the vortex layers on the upper and lower surfaces of the airfoil at its trailing edge (point
zB) are denoted by γ

(1)
B (t) and γ

(2)
B (t), respectively. Then, the intensity of the vortices γB(t) shedding from the

airfoil is equal to γB(t) = γ
(1)
B (t) + γ

(2)
B (t). This intensity is linked to the velocity circulation around the airfoil by

the relation
d

dt
Γ(t) = −γB(t)wB(t), wB(t) =

1
2

(γ(2)
B (t)− γ(1)

B (t)), (1.1)

where wB(t) is the velocity of the vortex shedding of the airfoil.
Relation (1.1) follows from the Kutta–Joukowski postulate and the Thomson theorem on conservation of

velocity circulation along a closed fluid contour.
In [6], the following three versions of additional (to the Kutta–Joukowski postulate) boundary conditions at

a blunt trailing edge.
Version 1. The conditions

γ
(1)
B = 0 for

d

dt
Γ < 0, γ

(2)
B = 0 for

d

dt
Γ > 0 (1.2)

imply that at the corner point formed by the wake vortex and the airfoil contour, the relative fluid velocity is equal
to zero (Fig. 1).

Version 2. The following condition is satisfied:

wB(t) = |γB(t)|/2. (1.3)

Condition (1.3) follows from (1.2) and the definition of the velocity of the vortex shedding of the airfoil. Substituting
(1.3) into (1.1), we obtain

d

dt
Γ(t) = −1

2
γB(t)|γB(t)|. (1.4)

We note that in studies of unsteady fluid flow around a blunt trailing edge airfoil, it is common to use
relation (1.4) rather than the original condition (1.2).

Version 3. An additional condition at a blunt trailing edge is not specified. This version corresponds to
local replacement of a blunt edge by a sharp edge (reversal point).

2. Gorelov and Smolin [6] proposed an algorithm of solution of the nonlinear initial boundary-value problem
of unsteady flow around a blunt trailing edge airfoil for the above-mentioned versions of additional boundary
conditions at the point zB . This algorithm allows local flow characteristics at the trailing edge of an airfoil to be
determined with high accuracy. In this case, the boundary-value problem that arises in each time step reduces to
a combined system of integral equations solved by the panel method. The initial segment of the vortex shedding
of the airfoil is simulated by a panel with a linear distribution of vortex-layer intensity, and the remaining part of
the wake vortex is replaced by a system of discrete vortices. Strict satisfaction of conditions (1.2) is implemented
by using a spline of special form. The system of nonlinear algebraic equations to which the problem is reduced in
each time step is solved by an iterative method.

We performed a numerical experiment for Kármán–Trefftz airfoils over a wide range of parameters of the
problem. Emphasis was on the estimation of the influence of the angle δ (the angle between tangents to the upper
and lower sides of the airfoil at the trailing edge) on flow characteristics. Results of calculation of the quantities γB ,
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Fig. 2

γ
(1)
B , γ(2)

B , wB , and Γ as functions of time t (0 < t 6 T ) for δ = 0.1, 1.0, and 2.5 are given in Figs. 2–4, respectively.
The airfoil performed translational vibrations along the normal to the chord with an amplitude of 0.1b and Strouhal
number ωb/v∞ = π (b is the airfoil chord, ω is the circular frequency of vibrations, and v∞ is the velocity of the
incident flow). In Figs. 2–4, the calculation results are shown by solid curves for Version 1 and by dashed curves for
Version 3. The calculations for Version 2 practically coincide with the calculations for Version 3 and, hence, they
are not shown in Figs. 2–4. The airfoils used in the calculations and the shapes of the relevant trailing vortices at
the end of the first period are shown at the top of Figs. 2–4, (filled points refer to Version 3 and open points refer
to Version 1).

3. We now analyze the results presented in Figs. 2–4. First of all, we consider the singularities of the solution
obtained with condition (1.2) satisfied. In the limiting case δ → 0, it does not become the solution relevant to δ = 0
and is discontinuous for the local flow characteristics at the blunt edge. These statements are illustrated by the data
presented in Fig. 2. The discontinuity arises for t/T = 0.45, where the time derivative of the velocity circulation
vanishes. In the interval 0 < t/T < 0.45, the derivative dΓ/dt < 0 and, according to condition (1.2), the intensity
of the vortices shedding from the upper surface of the contour γ(1)

B (t) is equal to zero. With passage through the
point t/T = 0.45, the function γ

(1)
B (t) takes a nonzero value in a jumpwise manner. Similarly, at 0.45 < t/T < 1,

the derivative dΓ/dt > 0 and the intensity of the vortices shedding from the lower surface of the contour, γ(2)
B (t), is

equal to zero.
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Fig. 3

The solutions obtained for Versions 2 and 3 are different in nature, and as shown by the numerical experiment,
they practically do not differ from each other. Boundary condition (1.4) imposes a constraint on the total intensity
of trailing-edge vortices γB , whereas condition (1.2) is more stringent and requires that the intensity of the vortices
shedding from either the upper or lower surfaces of the airfoil be equal to zero. Therefore, condition (1.4) allows us
to drop the stringent condition (1.2) and smooth the solution in the neighborhood of the blunt edge. In particular,
the limiting case δ → 0 corresponds to δ = 0. Such solutions were obtained in all papers that considered the
problem of unsteady flow around airfoils using condition (1.4).

Thus, condition (1.4) follows from condition (1.2) but the solution obtained in this case does not satisfy the
initial condition (1.2). We note that with increase of the angle δ, the difference between these solutions decreases,
and at δ > 2, boundary conditions (1.2) and (1.4) generate practically identical solutions (see Fig. 4).

An analysis of results of the numerical experiment leads to the following conclusions.
Strict satisfaction of condition (1.2) leads to a discontinuous solution for the local hydrodynamic character-

istics of unsteady fluid flow near the blunt edge, which is inconsistent with the physical flow pattern.
The solution subject to condition (1.2) at the limit δ → 0 does not becomes the solution of the problem

for a sharp-edged airfoil (δ = 0), which, in particular, indicates that the problem of unsteady flow around a blunt-
edged airfoil is substantially nonlinear and cannot be linearized at δ � 1 within the framework of the flow model
considered.

The solution subject to condition (1.4), which follows from condition (1.2), is physically meaningful and
practically coincides with the solution of the problem for a sharp-edged airfoil over the entire range of values of the
angle δ (0 < δ < π).
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Fig. 4

At the limit δ → π, the solution subject to condition (1.2) coincides with the solution of the problem for a
sharp-edged airfoil.

These conclusions are paradoxical in nature and suggest a paradox of the blunt edge of an airfoil in unsteady
flow. The essence of this paradox is that the solution of the nonlinear problem of unsteady flow around a blunt-
edged airfoil subject to strict boundary conditions in this edge is physically meaningless, whereas the solution of
this problem for the same airfoil with local replacement of the blunt edge by a sharp edge is physically meaningful
for all values of the angle δ, including δ = π.

The paradox is a consequence of the adopted model of unsteady flow in the neighborhood of a blunt edge,
which assumes inflection of streamlines. The local replacement of the blunt edge by a sharp edge is equivalent to
the hypothesis on the smoothness of streamlines in the neighborhood of the trailing edge. The use of this hypothesis
changes the mathematical model of the flow around the airfoil by abandoning the additional condition (1.2). Thus,
the Kutta–Joukowski postulate should be used for sharp-edged airfoils.

We note that for steady flows, the local replacement of the blunt edge by a sharp edge is also reasonable.
This replacement does not change the velocity circulation around the airfoil but gives nonzero velocity in the trailing
edge, which is inherent to real flows. In fact, this flow model takes place in the formulation of the Kutta–Joukowski
postulate as the requirement of equal fluid velocities on the upper and lower surfaces of the airfoil with approach
to the trailing edge.

The author thanks Yu. S. Smolin for assistance in carrying out the numerical experiment.
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